Stochastic Integration for Tempered Fractional Brownian Motion.

نویسندگان

  • Mark M Meerschaert
  • Farzad Sabzikar
چکیده

Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

Tempered fractional calculus

Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution....

متن کامل

An Approach to Stochastic Integration for Fractional Brownian Motion in a Hilbert Space

A Hilbert-valued stochastic integration is defined for an integrator that is a cylindrical fractional Brownian motion in a Hilbert space. Since the integrator is not a semimartingale for the fractional Brownian motions considered, a different definition of integration is required. Both deterministic and stochastic operator-valued integrands are used. The approach to integration has an analogue ...

متن کامل

On Fractional Tempered Stable Motion

Fractional tempered stable motion (fTSm) is defined and studied. FTSm has the same covariance structure as fractional Brownian motion, while having tails heavier than Gaussian but lighter than stable. Moreover, in short time it is close to fractional stable Lévy motion, while it is approximately fractional Brownian motion in long time. A series representation of fTSm is derived and used for sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stochastic processes and their applications

دوره 124 7  شماره 

صفحات  -

تاریخ انتشار 2014